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ABSTRACT: A method is given for predicting the signal-to-noise
ratio to be expected for some simple receiving systems. The
method relies heavily on the work of Peterson, Birdsall and Fox,
and requires, as a starting point, a specification of detection
and false-alarm probabilities as performance criteria. Some sonar
examples are indicated, and the validityIof the method is demon-
strated by comparison with measured recognition differentials for
the ear, and with measured detection thresholds for A-scan radar
displays.

For sinusoidal signals in Gaussian noise, the minimum achiev-
able signal-to-noise ratio is shown to be d/2Ts, where d is deter-
mined by the selected probabilities and Ts is the observation
time. This minimum threshold deteriorates whenever the system
requirements impose a deterioration of knowledge of the signal.
It is clear that in general the only valid approach to improving
the detection threshold is to improve the available knowledge
concerning the signal and noise.
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This is a joint report by NOL and ONR (Code 411) on a
subject of vital concern to sonar system designers. It presents,
for the first time, simple formulas for predicting the input
signal-to-noise requirements of detection systems. It demon-
strates that simple, well-known detection techniques often do as
well, signal-to-noise-wise, as more sophisticated methods. The
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INTRODUCTION

Any detection device, whether it be as complex as a digital
computer or as wonderful and compact as the human ear, requires
a minimum input signal-to-noise ratio for successful operation.
This minimum acceptable signal-to-noise ratio is of immediate
and vital concern to the design engineer, because it is one of
the parameters that determine system performance. Yet the
engineer concerned with devising new systems or understanding
the behavior of old ones has had only limited and often ad hoc
means for predicting the signal-to-noise ratio for any detection
device of interest, and he has not ever been sure about what
system parameters must be known or specified for the purpose.

During the past decade, a great volume of work has been done
on information theory, decision theory and detection theory. In
particular, the work of Pjterson, Birdsall and Fox 1), and
Van Meter and Middleton(2 , has provided the necessary theoret-
ical basis for predicting what input signal-to-noise ratio will
be required for a detection device, once certain performance
criteria are decided upon. The usefulness of decision theory in
sensory maeasurements has been brought out in audition by Tarner
and Swetsk3), and in vision by Swets, Tanner and Birdsall 4).
The present paper attempts to provide the design engineer with a
method of estimating the required input signal-to-noise ratio,
for a receiver using all the available knowledge of the signal
and noise and satisfying certain performance criteria. Although
such a computation will apply strictly to a receiver utilizing
the information available to it in the most statistically
efficient manner, theory and examples suggest that many receiv-
ers, including the human ear, do not fall far short of this ideal
receiver in actual performance.

In underwater sound, the input signal-to-noise ratio
expressed in db required for detection is commonly called the
"recognition differential" of the receiver. This term was
borrowed from the theory of audition, where it refers to the
"differential" needed to "recognize" a tone presented to the ear
in a noise background. In the underwater sound literature this
somewhat unfortunate term is commonly defined as the signal-to-
noise ratio required to detect a signal a certain specified
fraction of the time (usually 50%, although other detection
probabilities have been employed). It is now recognized,
however, that this definition is incomplete, and therefore quan-
titatively meaningless, because it fails to specify the percen-
tage of false signals or "false alarms" that are permitted to
occur. These "false alarms" are a vital and determining factor
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for recognition differential. Indeed, any signal, however small,
can be detected an arbitrary percentage of the time (including
100%) if the number of false alarms is allowed to increase
indefinitely. For this reason, nearly all of the older litera-
ture is not immediately useful from a quantitative standpoint,
inasmuch as the false alarm rate seldom appears to have been
determined.

A term equivalent to, but more general than recognition
differential is detection threshold.* This may be defined as the
input signal-to-noise ratio required for detection for specified
values of detection and false-alarm probabilities. Detection
threshold is most conveniently referred to a one cycle per second
bandwidth of noise; when the signal itself is noise-like in the
sense that its power is distributed over a band of frequencies,
it too will be referred to a one cycle per second bandwidth.
Thus, for single frequency signals of power S occurring in a
noise background of spectrum level No, the detection threshold is
the ratio S/No; for band-energy signals of spectrum level So, it
will be the ratio So/No. In all cases, the spectrum levels
referred to will be those in the input band of the detection
device.

The general approach of this paper to predicting the detec-
tion threshold is to begin with a specification of the perform-
ance that is desired from the detection system. In terms of
detection, this performance can be completely specified by means
of two parameters: i) the detection probability, or probability
that a signal, when present, will be detected, and, 2) the "false
alarrd'probability, or probability that a signal, when absent,
will be (falsely) detected. These two probabilities must be
determined by the nature of the use to which the detection sys-
tem will be put, and the values and costs involved in decisions
resulting from the operation of the system. Having selected
these two probabilities, the next step is to refer to an appro-
priate set of ROC (Receiver Operating Characteristic) curves
developed( 5 )from basic statistical considerations of signals and
noise, and to read therefrom a value of a parameter, d. Having
selected this parameter; simple expressions are used to relate
the input signal-to-noise ratio required for detection under the
conditions selected at the outset (the detection threshold) to
1) the bandwidth of the receiver, W, 2) the duration (pulse-
length) of the signal Ts, 3) the integration time of the post-
detector smoothing filter, T, and 4) the type of detector
employed. As illustrations of the method, comparisons will be

*Not to be confused with the processor output "threshold", of
reference (1).
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given between the theoretical performance computed in this manner
and the observed thresholds of two systems. One is the ear,
which, if assumed to behave as an energy detector according to
the aural critical band model, is found to have a recognition
differential in approximate agreement with the theoretical model.
Another example is provided by radar detectability data of pips
on an oscilloscope screen, for which the method gives excellent
predictions of observed thresholds.

DETECTION THRESHOLD FOR SIMPLE CASES

In 1954, Peterson, Birdsall and Fox(l) published a general
theory of signal detectability utilizing detectability criteria
in its basic approach. In this approach a receiver is judged on
the basis of its conditional probability of detection if a signal
occurs at its input, P(D), and on the conditional probability of
a (false) alarm if no signal occurs, P(FA). The detection and
false alarm performance of any receiver can be summarized in one
graph, called a Receiver Operating Characteristic (ROC), in which
P(D) is plotted against P(FA). For an optimum receiver utilizing
all the information available to it the parameter "d" of the ROC
curves is found to be simply related to the signal-to-noise ratio
at the receiver input.

In applying the theory to practical problems, Peterson,
Birdsall and Fox recognized a number of cases involving different
degrees of knowledge concerning signals in Gaussian noise back-
grounds. Three of these we may call Cases I, II, and III.
Case I applies for a signal waveform known exactly in a background
of white Gaussian noise. Case II is that of a signal known
exactly except for phase, also in white Gaussian noise. Case III
applies strictly for a Gaussian noise-like signal in a background
of Gaussian noise; all we know about the signal is its mean and
its variance as a Gaussian sample. For underwater sound, Case I
would apply for echo ranging in an ideal medium on a stationary
target at an exactly known distance, or for communication over a
fixed known distance. Case II is, for example, that of ordinary
echo ranging on a target of slightly unknown range*, where the
time of occurrence (phase of the echo carrier is unknown; Case III
applies for echo ranging with noise pulses or explosives where

*When the range, or time of occurrence, is completely unknown and
may fall within any one of M non-overlapping range intervals, the
echo may be said to be one of M orthogonal signals. It can be
shown that the detection threshold is then S/No = d +lnM. This,

2Ts
and other cases of sonar and raýgi interest, are treated theoret-
ically by Peterson and Birdsal
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WTs >> 1. The ROC Curves for Case II are similar to those of
Case I, but have values of d approximately twice those for Case I
in the usual working range of P(D) and P(FA). The ROC Curves for
Case III can be shown to reduce to those of Case I when the input
signal-to-noise ratio'S/N is small and when the number of sample
points 2WTs is large. Figure 1 shows the appropriate set of ROC
Curves applying to these cases, which represent successively
greater deterioration of knowledge concerning the signal.

For Case I, d is related(l) to the system parameters through
the definition d v 2E, in which E is the energy of the signal,

No
equal to signal power S times signal duration -r, and No is the
noise power per unit bandwidth, equal to N divided by W. Hence
we have

2S_ Sd = N/W 2W]s N

where S is the signal-to-noise ratio in the receiver input band-
width N W. Hence for these cases the detection threshold is

S/No d
/ 2T-

For Case II, d is about twice its value for Case I, so that

S/N° - Td

These two cases imply the use of coherent processing in which the
detailed information about the signal is utilized in the process-
ing circuitry. For Case I, where the signal is known exactly, it
can be shown that the optimum processor is a cross-correlator in
which the input signal plus noise is correlated with a replica of
the completely known signal. For Case II, the optimum processor
is again that of a Case I cross-correlator; however, lack of
phase information requires two such processors in quadrature.
Higher detection thresholds (about 3 db) are required in Case II
than in Case I, as would be expected from the fact that less
information is required about the signal in Case II than in
Case I.

For Case III, Peterson, Birdsall and Fox show that the ROC
Curves of Case I apply, provided that d be taken such that
d = WTs (S/N) 2 under the conditions that S/N << 1 and 2WT >> 1.
These are the usual conditions of interest. For sinusoidal
signals in Gaussian noise, the detection threshold becomes

S/N0 =T)

4
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Since essentially only the signal energy is known, the optimum
type of processing is an energy detector, such as a nonlinear
detector or amplifier, preceded by a filter. It can be shown
that the optimum likelihood-ratio detector is a square-law
detector, having an output proportional to the square of the
input. Other types of non-linear devices -- such as the full-
wave and half-wave linear rectifiers - have a detection perform-
ance somewhat poorer than that of the square-law detector.
Table I is a summary of the detection threshold for the three
simple cases considered, together with values of the factor k
representing the efficiency of a particular nonlinear detector.
For Gaussian noise-like pulses, it is often convenient to express
the input signal-to-noise ratio in terms of both signal and noise
in a one-cycle band, so that the detection threshold becomes

S = (kd

So far, we have not considered the effect of any post-detec-
tor averager or smoothing filter that may be included in the
detection process, such as considered in reference (6), for
example. If a post-detector smoothing filter of integration
time T is used, the above holds only if T = Ts. If T > Ts, too
much smoothing is used; the pulse does not build up to its full
value and the detection threshold increases. If T I Ts,
insufficient smoothing is used; the pass band _ of the filter is

T
excessively broad and too much noise reaches the output. The
effect of a mismatched output filter is to add the quantity
I10 log T/Tsl to the detection threshold in decibel units for
Cases I and II, and 15 log T/Tsl for Case III. Similarly, if n
incoherent presentations are made, the expressions for detection
threshold in db should include a term -10 log n in Cases I and II
and -5 log n in Case III.

Before considering specific examples, it may be worthwhile to
consider the meaning of these expressions for the design engineer
who strives to minimize the signal-to-noise requirement for his
system. The formulas just given verify the well-known precept
that it is always desirable to use the largest Ts compatible with
other requirements, such as range and range resolution. A second
requirement is that the integration time T of the output averager
must be made equal to Ts. Finally, the input bandwidth must be
made as small as possible compatible with other requirements
(such as the bandwidth needed to accommodate Doppler shift),
although it must not be smaller than approximately l/Ts. The
essential aspect of the matter is that the minimum signal-to-noise
ratio required for detection is determined by the available
knowledge concerning the signal and noise. When this knowledge is
complete, as it is for the case of an exactly known signal in

"5
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TABLE I

DETECTION THRESHOLD IN GAUSSIAN NOISE

Optimum Detection
Processing Threshold

Case I Cross correlation S/No = d/2Ts
Signal known of signal plus
exactly noise

Case II Same, but with S/N 0 • d/Ts
Signal known multiple time
exactly except delays
for phase

Case III Non-linear detection S/No = (kdW/Ts)½
Signal energy square law detector k = 1
known (sinu- full-wave rectifier k = 1/(7r - 2)
soidal signals) half-wave rectifier k = 1

27 - 2
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Gaussian noise, a certain minimum signal-to-noise ratio can be
achieved. As the knowledge concerning the signal deteriorates
(as when the signal frequency is uncertain because of the Doppler
shift produced by a target moving at an unknown speed), the
signal-to-noise ratio also deteriorates. This behavior of the
detection threshold with deterioration of information about the
signal is shown in Table II, where a number of instances of
successively decreasing knowledge concerning the signal are
listed. The second column in the table gives the conditions
applying for sonar echo ranging when the knowledge about the
phase (time of occurrence), frequency, and pulse length of the
echo successively deteriorates. By way of illustration, the
column on the right gives a numerical example of the achievable
detection thresholds for one set of selected values of the
determining parameters.

Another way of illustrating the subject is shown in Figure 2,
where the increase in detection threshold over that required when
the knowledge of the signal is complete is plotted as a function
of WTs. If, for example, it is necessary to use a Wr5, product of
100 and a T/Ts ratio of 4 (or -) in order to satisfy the require-
ments of the system, then 13j db more signal will be required for
detection over what would be needed if the echo were known
exactly. This is the penalty that must be paid for the failure,
caused by system requirements, to take advantage of all the
characteristics of the signal.

When the signal is known completely, a delayed, noise-free
replica of the signal can be generated and fed into a cross-
correlator; this provides the optimum detection system. Alter-
natively, a square-law detector, preceded by a matched filter
and followed by a matched averager, is a detection system having
the same detection threshold. This is evidenced by Figure 2 in
the vicinity of WTs = 1. Indeed, for pulsed sinusoidal signals
the minimum threshold can be achieved if WT can be made equal to
unity; in this case all processors are equivalent.

It may have been noted that we have not made mention of an
output signal-to-noise ratio, or of the processing gain achiev-
able in detection systems. Instead, the output of the system is
considered to be the detection decision itself, as determined by
decision theory involving selected probabilities concerning the
presence of a signal or its absence. In this view, the basic
measure of processor performance is the parameter d of the ROC
Curves. Comparison of the d for Case I with that needed to
achieve the same P(D) and P(FA) with a less efficient processor
(one designed using less than complete knowledge of the signal,
for example) results in an efficiency-measure of the less effi-
cient process. This efficiency is expressed as the increase in

7
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the detection threshold (Figure 2) required to achieve the same
performance using the less efficient processor. The output
signal-to-noise ratio is recognized in this procedure only as a
mathematical fiction describing an intermediate point in the
input-to-decision chain and therefore having only limited value
as a working concept.

EXAMPLES

As an interesting application of the method, and as a veri-
fication of the validity of the critical band model of audition,
we may turn to measurements of the recognition differential of
the ear for tones in broadband noise. According to the critical
band concept, we can simulate the masking behavior of the ear by
a pre-detection filter of bandwidth equal to that of the
"critical band" at the frequency of the tone, an energy detector
of some sort, and a low pass smoothing filter with a certain
integratioo time. The critical bandwidth of the ear is
believedk7, from studies of noise masking to be about 50 cps at
a frequency of 800 cps; the integration time of the ear is
similarly known to be of the order of one second at that fre-
quency. The expression appropriate for Case III for the recog-
nition differential for a one cycle band of noise is

10 "log S/No = 5 log (!) + 1J5 log T/Ts5 .

Using p(D) = 0.50 and assuming arbitrarily a value of p(FA)=
0.05, we find from Figure 1 that d = 3. Using W = 50 cps and
T = 1.0 sec we may compute values of 10 log S/No as a function
of pulse length Ts. The computed curve is shown in Figure 3
together wi. h.revurid aural recognition differentials from the
literature.8) 9) (10) The ear is seen to be nearly equal in
performance to the ideal energy detector. Better agreement would
be had if the wider critical bandwidth suggested by more recent
experimentsll) had been assumed. This agreement between theo-
retical curve and observed values is noteworthy in indicating the
general correctness of the critical band eneoyv-detictor concept
of the ear, even though various studies show(e)( 13) that this
concept is far too simple to account for all the known facts of
auditory masking. It should be stressed that a false alarm rate
is seldom, if ever, referred to in the masking measurements
described in the literature.

An interesting sidelight on the relation of audition and the
ROC Curves is the close agreement between the "transition curves"
of hearing, such as those of Schafer and Gales(14), and a curve
of detection probability against detection threshold obtained
from the ROC Curves at a fixed value of p(FA).

9
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A second, and contrasting, example of the application of the
method is to be the detection of radar echoes on an oscilloscope
screen. During World War II, the threshold signal-to-noise
requirements for radar pips were thoroughly investigated and
have been reported in the well-known book of Lawson and Uhlenbeck(15)
As numerical data for comparison, we select reported measurements
of input signal-to-noise ratios for single and multiple radar
traces on an A-scope. Measured data of this type, as copied from
Figure 8.7 of the above reference, are given in Figure 4. The
ordinate is the threshold signal power required for 90% detection,
in db above the noise power in a band equal to 1/¶, where T is
the radar pulselength. In our symbolism, this is the quantity
SW/No at the 90% level of detection. The abscissa is the product
of the i.f. bandwidth times the pulselength. Since the i.f.
bandwidth was the smallest post-detector bandwidth employed, the
reciprocal of the i.f. bandwidth is equivalent to the integration
time T. Thus, the abscissa is the quantity Ts/T. The video
(pre-detection) bandwidth W was 10 megacycles and the pulselength
employed was 1 microsecond. Four different sets of data are
plotted in Figure 4 for a single sweep and for a 3-sec. presenta-
tion time at pulse repetition frequencies of 12.5, 200, and 3200
pulses per second. These correspond to numbers of presentation,
n, of 1, 37, 600 and 9600.

Selecting a value of d = 10 from Figure 2 for p(D) = 0.9 and
for an assumed p(FA) of .05, we obtain the V-shaped lines plotted
in Figure 4. Good agreement with the measured data is evident,
especially at small values of n. However, the improvement in
signal-to-noise ratio with increasing n is somewhat less than
5 log n at large values of n, implying some deterioration in the
integration function of the eye for large numbers of overlapping
A-scan displays.

SUMMARY

This paper is an attempt to translate, into terms useful to
the underwater sound engineer, some of the implications of the
ROC Curves of Peterson, Birdsall and Fox. These curves are
based on a mathematical description of signals in Gaussian noise
and on the concept of the optimum receiver. To predict the
signal-to-noise requirements of a given system, this approach
requires that two sets of parameters be specified: a pair of
performance parameters, together with a number of parameters
determined by the detection device, such a pulse-length and
bandwidth. Once these parameters are specified, it is possible
to realistically predict the detection performance of real
systems. This is shown by comparisons with the measured signal-
to-noise thresholds of two widely diverse detection systems. It
may therefore be concluded that real detection devices do not

10
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fall far short of the performance of the ideal receiver of the
underlying theory; the ideal, optimum receiver is approximated
by actual receivers when both utilize the same amount of knowl-
edge concerning the signal and noise.

It is important to recognize that, if the noise background
has Gaussian statistics, the determining factor in detectability
is the amount of available knowledge concerning the signal.
Once this has been determined by the system requirements, both
the type of processing to be employed and the detection thresh-
old that can be attained can be predicted. The present paper
presents a method for computing this threshold for some simple
detection conditions in Gaussian noise background. Although
emphasizing pulsed signals, the method will apply to CW signals
as well as pulses if the pulselength Ts is considered to be the
observation time during which the CW signal is observed.

11
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FIGURES

Figure 1 - ROC Curves for the case of the signal known exactly.
They may be used approximately for Case II, and under
certain conditions for Case III.

Figure 2 - Effect of bandwidth-pulselength product on detection
threshold.

Figure 3 - Comparison of Measured and Computed Recognition
Differential of 800 cps Tones in Broadband Noise.
The dots, circles, and crosses are measured values
taken from References (8), (9), and (10) respectively.
The lines show the recognition differential computed
for W = 50 cps and T = 1 sec. Reference (10) data:
400 and 670 cps averaged.

Figure 4 - Comparison of Measured and Computed Thresholds for
90% Detection of Radar Pips on an A-scan oscilloscope
display. The sloping lines are the theoretical
predictions using the method of this paper. Data
points are measurements by three different observers
for one sweep; a three second observation time at a
pulse repetition frequency of 12.5 (n = 37); a three
second observation time at a pulse repetition fre-
quency of 200 (n = 600); a three second observation
time at a pulse repetition frequency of 3200
(n = 9600).
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